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ABSTRACT 

Marine Corps Total Life Cycle Management (TLCM) is critical in meeting 

requirements established in Department of Defense Directive 4151.18, notably, 

“optimizing … concepts to deliver efficient and effective performance to the operating 

forces.”  Modeling and simulation (M&S) creates an opportunity to explore improvement 

opportunities before costly decisions are implemented.  Unfortunately, applying M&S to 

TLCM efforts has been hampered in the past by an inefficient, error prone process of 

moving gathered data to an M&S platform. 

This research uses Visual Basic for Applications to link two Marine Corps TLCM 

tools:  the Systems Operational Effectiveness Decision Support Tool (SOE DST) and the 

Total Life Cycle Management Assessment Tool (TLCM-AT).  The Bridging Operational 

Logistics Tool (B-OLT) is created to allow TLCM-AT models to be built automatically, 

using existing SOE DST data and limited subject matter expert inputs. 

The B-OLT built models are assessed, exercised with state-of-the-art design of 

experiments and used to predict future events. 

The research shows a link between data currently collected and simulation allows 

for quantitative analysis.  This analysis explores the Marine Corps’ data collection and 

summary techniques, and their application to modeling, demonstrating how B-OLT can 

be used to aid in future analytical efforts. 
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EXECUTIVE SUMMARY 

Marine Corps Total Life Cycle Management (TLCM) is critical in meeting the 

requirements established in Department of Defense Directive 4151.18, notably, 

“optimizing . . . operating concepts to deliver efficient and effective performance to the 

operating forces” (Wolfowitz, 2004).  Modeling and simulation (M&S) creates an 

opportunity to explore improvement opportunities before costly decisions are 

implemented.  Applying M&S to TLCM efforts has been hampered in the past by an 

inefficient, error-prone, and laborious process of moving gathered data to an M&S 

platform.  This research applies Visual Basic for Applications code to the problem of 

migrating data gathered and summarized to a modeling environment.  These models are 

then assessed, used as a predictive tool, and their sensitivities to input factors explored.  

Through automation, M&S can more readily be used to explore program improvements, 

improve provisioning efforts, and define budget requirements to support maintenance. 

TLCM is a complicated process.  The most powerful tools of the TLCM 

facilitator are good data and simulation.  The data collected provide information about the 

end item.  Simulation provides a way to test changes to the system before costs are 

incurred.  The use of data collected in simulation, in a process-oriented way, makes M&S 

accessible, allows for easy implementation of design of experiments (DOE), and makes 

validation possible. 

To be functional, the process must be easily executed and understood.  The user 

should also have a reason to use the process.  This research offers an approach to meeting 

this process requirement by using the following questions as a guide: 

• Can the development of Total Life Cycle Management Analysis Tool 
(TLCM-AT) models be aided through automation? 

• What gaps are there between data summarized in the Systems Operational 
Effectiveness Decision Support Tool and data required in TLCM-AT? 

• Once a TLCM-AT model is built, how well does the model assess against 
reality; and what factors are most relevant? 

• Given an assessed model and known fluctuations in operational tempo or 
vehicle population, can the model predict changes in parts failure events? 



 xvi 

The Marine Corps has contracted two independent TLCM tools:  The Systems 

Operational Effectiveness Decision Support Tool (SOE DST) and TLCM-AT.  These two 

TLCM tools are not connected, causing their full potential to go unrealized.  SOE DST 

collects inputs from over 12 maintenance and supply user interfaces.  These inputs 

pertain to critical end items used throughout the Marine Corps.  SOE DST reports 

historical facts pertaining to these end items; it is not designed to act as a predictive tool.  

TLCM-AT has the ability to make predictions based on projected operational tempo, 

distributions of failure rates, and logistics response times, but requires real-time data in 

order to produce accurate and relevant output.  While SOE DST contains information 

necessary to populate TLCM-AT, there is no established interface between the two 

systems. 

It is essential to have a tool that can link SOE DST and TLCM-AT.  The link 

should be automated to ensure tested accuracy of the process.  The result of the link is an 

opportunity to rapidly employ a predictive model with data that is readily available to 

program managers. 

This research challenges old constructs of TLCM-AT models built by  

modeling professionals from Clockwork Solutions using multiple sources of inputs, to 

include SOE DST.  The Bridging Operational Logistics Tool (B-OLT) was built to 

automate the model-build process.  While licenses are available to the Marine Corps, the 

model-build process is currently too complicated to be functionally practical.  Prior to B-

OLT, it took a trained TLCM-AT user approximately three days to build a rudimentary 

model strictly from SOE DST with limited subject matter expert data.  B-OLT uses SOE 

DST data to build, run, and extract output from a powerful, closed-loop, stochastic model 

in TLCM-AT in less than 10 minutes.  The automation demonstrates the ability to put 

M&S in the hands of program managers in a user-friendly way.  Figure 1 demonstrates 

this process. 



 xvii 

Model 
Output

-Failures
-Costs
-Maintenance
    Performed
-Availability
-Operating  
     Hours
      or Miles
      Achieved

Model Logic

-Interaction Rules
-Error Handling
-Event List  
    Management

Model 
Structure

-Programming
     Environment
-Module
     Development
-Programming

Data 
Analysis

-Failure Rate
-Distributions 
     >Op Tempo
     >Maintenance
          Times 
-Repair 
     Probabilities

Data 
Cleanup

-Structure
-Location
-Age
-Status
-Spares

Data 
Sources

 -Component
     Tracking
-Lead Times
-Repair Cycles
-Ship Times
-Operations
-Cost Data
-Limits

B-OLT

SOE TLCM-AT

 

Figure 1. The SOE to TLCM-AT link developed by B-OLT. 

 The automation itself saves time, makes modeling accessible to all Table of 

Authorize Materiel Control Numbers reported by SOE DST, produces results from data 

that can be validated, and allows DOE to be applied to gain insight for policy decision 

making. 

 Through the process of assessment, ways to enhance SOE DST are discovered.  

The B-OLT-built model reported within 10% of the same failures experienced in reality.  

The proximity to reality makes the models practical to use in future ‘what if’ analysis.  In 

the course of this research, opportunities to improve SOE DST for use as input into M&S 

platforms were discovered.  There are factors missing from SOE DST that are necessary 

for TLCM M&S: the average miles per hour and miles driven, maintenance and supply 

times, indenture structure and the vehicle counts used to compute failure rates.  

Indentured structure will allow for a more robust series of models by reducing the amount 

of memory taken by the simulation.  The remaining factors directly affect the outputs 

from the model. 

 With B-OLT, multiple models can be built and executed in sequence, allowing a 

DOE application to determine input factors of interest.  The measures of effectiveness 

can be chosen from any number of outputs, such as cost or performance.  This research 

used modeled versus real failures as the measure of effectiveness.  Through DOE, it was 

discovered that the failure rate and vehicle counts are the most important consideration in 

terms of data inputs.  Knowing this gives focus of effort when considering where to 

improve data collection in the future. 

 Once the B-OLT model-building process is assessed, it is used to predict failures.  

An automated model built from 2002 data is used to predict 2003 requirements.  The First 
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Marine Expeditionary Unit is used as the test bed.  From 2002 to 2003, the unit’s 

operational tempo and vehicle populations increased in response to mission requirements.  

Using the future increase in operational tempo and population, coupled with 2002 SOE 

DST data only, models were built and run.  The models were able to accurately predict 

future requirements.  If the model had been used to build a provisioning package, the unit 

would have enjoyed favorable results.  Specifically, the results show that going one 

standard deviation more than the model’s prediction would have resulted in being short 

on only 17 of 297 parts during the one-year provisioning period. 

 There are important lessons learned that must be addressed to improve the overall 

TLCM data gathering to simulation process; however, this research provides a 

demonstrated capability to move from data that is already collected and summarized to a 

predictive model in an automated manner.  By automating many human-in-the-loop 

activities, variability and bias is removed from the models created.  Further, the process, 

and its associated data, can be validated over time.  This automation can lead to 

validation of the model-build process and put modeling in the hands of PMs to assist in 

policy decisions. 
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I. MARINE CORPS MAINTENANCE IS COMMITTED TO 
SUPPORTING THE WARFIGHTER 

Marine Corps Total Life Cycle Management (TLCM) is critical in meeting the 

requirements established in Department of Defense (DoD) Directive 4151.18, notably, 

“optimizing . . . operating concepts to deliver efficient and effective performance to the 

operating forces” (Wolfowitz, 2004).  Modeling and simulation (M&S) creates an 

opportunity to explore improvement opportunities.  Applying M&S to TLCM efforts has 

been hampered in the past by an inefficient, error-prone, and laborious process of moving 

gathered data to an M&S platform. 

TLCM is a complicated process.  The tools of the TLCM facilitator are data 

collected on the assets that are being managed and simulation.  The data collected 

provide information about the weapon system or end item.  Simulation provides a way to 

test changes to the system before costs are incurred.  The use of data collected in 

simulation, in a systematic way, allows not only for end item improvements, but also 

identifies important data to improve models.  This chapter reviews the Marine Corps’ 

TLCM assets and the focus of the research. 

A. TLCM PROMOTES ASSET AVAILABLITY 

The ability of the Marine Corps to accomplish its mission is reliant on personnel 

and equipment readiness.  TLCM is the process by which program managers (PMs) 

assess a principal end item throughout its lifetime and ensure its availability.  Policy, 

procedural, and performance upgrades may be required to ensure the most efficient use of 

a piece of equipment.  Through M&S, the guesswork may be taken out of policy and 

management decisions.  This research bridges a gap between summarized data and a 

modeling platform, to allow for validation of the model build process and improved 

TLCM through the use of simulation. 

B. RELATED ELEMENTS CENTRAL TO TLCM 

According to Marine Corps Order (MCO) 4000.57, TLCM is the “formal process 

to identify, analyze, and implement synergistic ‘cradle to grave’ solutions that optimize 
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the acquisition/logistics chain across the Marine Corps in support of operating forces” 

(Kelly, 2005).  Included in TLCM is prognostics- and performance-based logistics.  To 

improve the maintenance process and TLCM in general, data must be collected and 

analyzed, and action, perhaps in the form of policy, taken to improve those areas 

determined to be in need of change. 

A key to success is the ability to collect and summarize data, and then use this 

data to simulate possible realities.  Once such a model is established, factors may be 

adjusted to reflect potential management decisions or policy changes aimed at improving 

performance, increasing availability, or lowering the cost of maintenance.  The Marine 

Corps has contracted to develop a data summarizing tool aimed at assessing the overall 

performance of equipment.  Additionally, a modeling platform has been purchased to 

build predictive models that provide analysis using Monte Carlo-based simulation. 

TLCM is a process.  Initially, a way of doing business is established.  As the end 

item and its supply and maintenance systems are executed, problems resulting from 

unforeseen circumstances are identified.  With the use of M&S, possible system 

improvements can be tested prior to implementation.  In the case of TLCM, there are 

systems/processes already defined.  To effectively incorporate modeling, a current TLCM 

cycle must be acknowledged and applied within the model.  Figure 2 shows how 

modeling and simulation can be incorporated in the existing TLCM process. 
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Figure 2. The incorporation of modeling and simulation in the existing  
TLCM process. 

1. Collecting and Summarizing Data 

To affect TLCM, the Marine Corps must collect data and articulate it in some 

usable format.  The collection and summarizing of data allows the system’s operational 

effectiveness to be reported, given its current and previous environment.  Effectiveness 

here is a combination of the system’s availability, reliability, and maintenance operations 

costs.  Environmental factors may include operational tempo as well as supply and 

maintenance systems dynamics.  Examining how the system performs, given the dynamic 

environment in which the system is running, allows the analyst to determine failure rates, 

averages of shipping times, maintenance evolutions, and other factors that affect the 

system’s operational availability. 

2. Developing Logical Predictions Pertaining to the Impact of  
Policy Decisions 

The effort of developing a system’s operational effectiveness gives the analyst an 

opportunity to collect data that can be applied to M&S efforts.  With a verified and 

possibly validated model, developed policy decisions may be exercised in a simulated 

environment to determine their overall impact on defined measures of effectiveness.  



 4 

Through simulation, the data collected directly impacts possible futures.  Measures of 

effectiveness can span from availability of the end item, based on operational tempo 

change, to the impact of component upgrades.  The benefit gained from building verified 

and/or validated models is the ability to quantify the benefits of program changes to make 

more informed decisions. 

C. SYSTEM OPERATIONAL EFFECTIVENESS DECISION SUPPORT 
TOOL (SOE DST) AND TLCM ASSESSMENT TOOL (TLCM-AT) FOR 
TLCM WITHIN THE MARINE CORPS 

Recognizing the importance of TLCM in support of the warfighter, the  

Marine Corps is committed to the development of TLCM tools and processes.  The 

baseline requirement is data collection, followed by model development. 

1. SOE DST 

Marine Corps Systems Command (MCSC) has contracted to develop the  

Web-based SOE DST as a way to monitor and identify areas of concern for maintenance 

and supply issues (Alionscience, 2005).  The SOE DST summarizes historical data to 

evaluate performance and develop an understanding of possible future requirements.  

Through observation, historical maintenance issues may shed light on what causes a 

principal end item (PEI) to be in a nonavailable state.  Perhaps more importantly, SOE 

DST produces like data for all PEI’s by applying algorithms to information that is 

gathered from a myriad of sources.  This data, therefore, is universal for select table of 

authorized materiel control numbers (TAMCNs).  The use of the data in an M&S 

environment may then be validated across TAMCNs. 

This Web-based application provides a logical source for data to be used in 

simulation efforts.  A model must be verified and, eventually, may be validated.  To 

reach a point where validation is possible, the result produced by the model must be 

measured against reality.  When validating a model, its data must also be validated.  To 

reduce variability between models and to permit validation, the source of inputs should 

be standardized.  The SOE DST produces standardized data.  Further, the use of the  

SOE DST allows the model-build process to be reusable across equipment types. 
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2. TLCM-AT 

MCSC has established a contract with the company Clockwork Solutions and has 

procured TLCM-AT as a closed-loop simulation model (Clockwork Solutions, Inc, 

2007).  The model is built by populating 41 separate Access database tables.  The 

predictive capacity of the model is directly related to the inputs. 

TLCM-AT uses a variety of input data and provides an equal amount of outputs at 

simulation end.  These input tables represent base and supply structures, starting status of 

equipment, and maintenance factors.  The simulation takes user inputs and builds a fleet 

of vehicles, based on the performance and engineering specifications of PEIs.  With these 

inputs, TLCM-AT logic operates the modeled equipment as specified, subject to defined 

failure rates and supply/maintenance conditions.  Through the execution of the model, 

multiple results are gathered and summarized as output. 

Key outputs from TLCM-AT are availability, achieved operating hours, time 

awaiting maintenance or parts, number of tasks performed, number of parts 

condemned/requested, and life cycle costs.  These metrics are typical questions posed 

during the maintenance process evaluation and are helpful when conducting TLCM.  The 

simulation allows changes in processes or procedures to be evaluated prior to 

implementation.  While it is not appropriate to take the results as the absolute solution, 

the key insights derived do well as a tool to help decision makers evaluate potential 

policy decisions. 

D. JOINT EMPLOYMENT OF SOE DST AND TLCM-AT 

The full potential of SOE DST and TLCM-AT requires their joint employment.  

SOE DST collects inputs from a myriad of sources and systems used throughout the 

Marine Corps’ maintenance and supply communities to report historical facts.  SOE DST 

is not designed to act as a predictive tool.  TLCM-AT has the ability to make predictions 

based on projected operational tempo, distributions of failure rates, and repair times, but 

requires current data in order to produce accurate and relevant output.  While one system 

contains information necessary to populate the other, there is no established interface 

between the two systems. 
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In creating models using historical data that is systematically gathered and 

synthesized, the model-build process can be validated and reused across equipment 

platforms.  With a clear link between data and model, there is a reduction in variability as 

a result of subject matter expert (SME) opinion.  Additionally, all modelers will have 

access to the same data.  As a result, the quality of the data can begin to be measured. 

It is essential to have a tool that can link SOE DST and TLCM-AT.  The result of 

the link is an opportunity to rapidly employ a predictive model with data that is readily 

available to PMs.  If this model-build process is validated, it may be used to guide the 

decision-making processes pertaining to new platform purchases or upgrades, potential 

policy changes, and the potential impact of increased operational tempo.  If the model-

build process cannot be validated, it will serve to demonstrate gaps between the data 

collected and the predictive models the Marine Corps would like to employ.  Regardless 

of how accurate the simulation is, it can potentially provide useful insight to aid decision 

makers. 

E. PROBLEM FORMULATION AND RESEARCH DEVELOPMENT 

The use of current Web-based applications to build models in the TLCM-AT 

environment is critical to the future successful employment of the two tools.  The 

following questions guide this research: 

• Can the development of TLCM-AT models be aided using Visual Basic 
for Applications (VBA) and/or other programming languages? 

• What gaps are there between data summarized in SOE DST and data 
required in TLCM-AT? 

• Once a model is built using a VBA interface, how well does the model 
assess against reality, using failures as the measure of effectiveness 
(MOE)? 

• Given an assessed model and known fluctuations in operational tempo or 
vehicle population, can the model predict changes in parts failure events? 

1. Problem Formulation 

The TLCM M&S process involves data gathering, data summary/analysis, and 

model development and discovery.  As a result, many agencies are required to fully 
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develop a problem statement and subsequent measures of effectiveness.  For this 

research, the talents of many professionals were gathered and melded to produce a 

universally agreed-upon roadmap. 

The International Data Farming Workshop (IDFW) 18 was held in  

Monterey, California, in March 2009, and presented an opportunity to elicit insight from 

the attending TLCM professionals.  A complete report of the conference will be released 

in the future at http://harvest.nps.edu/IDFW/18/idfw18.html. Through IDFW 18, this 

research drew from the experience and collaborative efforts of many members 

representing the multiple layers of TLCM.  MCSC and Headquarters Marine Corps 

Installation and Logistics (HQMC I&L) are major stakeholders in the Marine Corps’ 

TLCM effort.  During IDFW 18, MCSC hosted a group focused on exploring the data-to-

summary-to-model process. 

The IDFW team was made up of a breadth of Marine Corps TLCM professionals.  

As part of the group, Dave Sada from Andromeda Systems represented the  

Marine Corps’ data-gathering element.  Alion is the contract holder for SOE DST and 

was represented in the group by Andy Foote.  Clockwork Solutions and Concurrent 

Technologies Corporation (CTC) are modeling platform developers for TLCM; both had 

modeling professionals attending the workshop.  Academic professionals from the Naval 

Postgraduate School also participated.  Finally, the Joint Light Tactical Vehicle (JLTV) 

modeling and simulation lead from the Program Executive Office for Land Systems 

attended as an interested customer of TLCM.  This research was dramatically aided by 

this gathering of stakeholders in the process.  By having all the interested parties 

participate in a joint effort, a universally accepted process and MOE was determined. 

The process for the research was to establish an automated link between the data 

and the model.  Once the link was established, the models were then assessed using root 

mean squared difference (RMSD) as the MOE based on the opinions of the IDFW 

workshop and the research sponsor.  Once a model was assessed as “good,” it was then 

exercised as a predictive tool.  Finally, the model’s sensitivity to input factors was tested 

using Nearly Orthogonal Latin Hypercube (NOLH) Design of Experiments (DOE). 

http://harvest.nps.edu/IDFW/18/idfw18.html�
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2. Link Automation 

 This research develops a Bridging Operational Logistics Tool (B-OLT)–an 

automated link between SOE DST and TLCM-AT.  B-OLT is created using VBA in the 

Excel environment.  Housed in Excel, B-OLT is transferable within the Navy Marine 

Corps Intranet (NMCI) network.  B-OLT may be easily expanded to draw input from 

other databases.  Additionally, the concept of a single source document that houses the 

data necessary to build a predictive model may be expanded to other modeling platforms. 

 In this research, B-OLT is limited to SOE DST as the single data source and a 

basic TLCM-AT model.  Therefore, the findings are not all inclusive and further research 

and discovery is required.  The opportunities to expand the research are numerous. 

3. Assess the Goodness of the Automated Model-Build Process 

The models built using the automated process are assessed based on RMSD of 

modeled and actual parts failures.  This goodness of fit is appropriate for a PM and their 

pursuit of TLCM.  Once a model is assessed as reflective of the actual failures that fed 

the model, it may be exercised to acquire answers to “what if” questions. 

For this research, individual models are built and the raw results used to assess the 

models.  These results are presented in a summary of all the models as well as individual 

TAMCN results.  This step may be thought of as a demonstration that a TLCM-AT 

model can be automatically built and produce reasonable results. 

4. Initial Examination of Predictive Capacity 

 Finally, the automated model-build process is used as a predictive tool.  It is 

known that I Marine Expeditionary Force (I MEF) experienced an increase in vehicle 

population and operational tempo between 2002 and 2003.  The SOE DST data from 

2002 was used to build a TLCM-AT model.  Once the model was built, the operational 

tempo and vehicle counts were adjusted to reflect the increase in these two areas that 

would have been known by I MEF.  This model was run for one year (2003) and the 

results compared to actual 2003 SOE DST data.  The initial results are promising.  The 

automated model demonstrates some success using historical data, coupled with expected 

future changes to make predictions. 
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5. Test Sensitivities by Varying Input Factors 

 Once the automated model-build process is assessed, the logical next step is to 

examine sensitivities of the models to the factors obtained by SMEs.  The limitation of 

data to a single SOE DST source meant that five factors that influence failures were left 

to other data sources.  It is important to determine how much of the model’s variation is a 

result of these factors not resident in SOE DST, in order to determine the possibility of 

improving the SOE DST platform.  Upon completion of an extensive DOE, it was 

realized that a reasonable portion of the variance for parts failed was captured in the 

automated model. 

In this research, a DOE is conducted and factors of interest are discovered.  In 

reality, models would be assessed, adjusted, and then used to answer “what if” questions.  

As this was not the purpose of the research, the process is limited to discovery alone in 

order to demonstrate the concept. 

F. BENEFITS OF AUTOMATING THE MODEL-BUILD PROCESS 

 This research provides a practical interface between two computer-based 

platforms used by the Marine Corps for TLCM.  Once the link between data gathered and 

models built is established, the models are then verified and the first steps toward 

validation are taken.  In so doing, this research demonstrates the ability to link the two 

systems in a manner that makes modeling and simulation readily accessible to all PMs in 

the Marine Corps.  Automating the model-build process allows models to be built 

rapidly, be assessed, and then used for “what if” analysis.  Using standardized inputs 

from SOE DST means the process may be shared across TAMCNs. 

G. THESIS ROAD MAP 

 The following chapters provide the reader with a brief history and possible future 

of TLCM within the Marine Corps.  Chapter II focuses on the SOE DST used by the 

Marine Corps.  Next, Chapter III explains TLCM-AT and its use of stochastic modeling.  

The TLCM-AT modeling structure demonstrates the complexity of the model and the 

dynamic answers possible with its effective employment.  A bridge between the data the 

Marine Corps currently collects and the TLCM-AT modeling platform is developed in 
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this research.  Chapter IV describes the methodology for developing the code behind this 

work and some of the limitations.  Once the model is developed using automation, it must 

be assessed.  The assessment and a step toward verification are described in Chapter V.  

With modeling and simulation comes the natural question of “what data is important?”  

Chapter VI demonstrates the use of model-building automation in concert with DOE.  

Finally, in Chapter VII, the insights gained through this research are discussed, along 

with future research opportunities. 
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II. SOE DST FOR DATA SYNTHESIS AND AWARENESS 

SOE DST is designed to synthesize and present data in an informative manner.  

The goal is to facilitate trend analysis and assess the current and historical availability 

posture for Marine Corps systems.  The method is data analysis on the maintenance 

records, with an understanding that the records are often inaccurate or incomplete. 

A. PURPOSE OF SOE WITHIN LIFE CYCLE MANAGEMENT 

 The Department of the Navy’s Instruction 5400.15 series defines life cycle 

management as “management responsibility for a program that encompasses the 

acquisition program, in-service support, and final disposal” (Winter, 2007).  DoD policy 

is that a system’s PM be responsible not only for the acquisition of a system, but also to 

remain accountable for the sustainment of the system over its lifetime.  As directed by 

MCSC’s Strategic Plan 2005-2009, this requires PMs to monitor and improve SOE.  

Measures of effectiveness include system performance, operational availability, process 

efficiency, and total ownership costs. 

 The monitoring of the systems is handled through SOE DST Web-based database, 

which collects data from a myriad of reporting sources, as illustrated in Figure 3.  With 

this data, PMs can identify areas that require improvement and, through the use of 

simulation, explore potential courses of action in order to make decisions to  

improve SOE. 
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SASSY: Supported Activities Supply System
MCDS: Material Capability Decision Support System
WOLPH: Weapon Information Report  On Line Processing Handler
MARES: Marine Corps Automated Readiness Evaluation System
MIMMS: Marine Corps Integrated Maintenance Management System
PQDR: Product Quality Deficiency Report
AFPS: Automated Forms Processing System
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Figure 3. System Operational Effectiveness data-gathering structure. 

B. SOE PROVIDES A PICTURE OF CURRENT POSTURE 

 Goal three, objective one, of the MCSC 2005-2009 Strategic Plan is to acquire the 

capability to monitor and improve SOE throughout the life cycle of systems and 

equipment (Catto, 2005).  The mission of the Capabilities Assessment Support Center 

(CASC) is to serve as the focal point for readiness, reporting, and total life cycle systems 

management assessments by measuring all performance aspects of fielded Marine Corps 

ground equipment throughout the life cycle. 

 To appropriately manage performance, and to answer the first objective of goal 

three, CASC contracted for the development of the Web-based SOE DST that 

summarizes and presents data to help PMs evaluate availability and define potential areas 

of improvement.  This Web-based tool captures inputs from 12 data sources (Figure 3) 

and summarizes that data into trend attributes such as availability, reliability, 

maintainability, supportability, and total ownership costs.  As data is gathered, it may 

then be used to highlight areas of concern, develop courses of action to address those 

concerns, and then modeled to help decide which is the most effective. 
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C. SOE DST HISTORICAL RECORD OF SYSTEMS MAINTENANCE 

SOE DST provides a historical record of a system and all the maintenance and 

supply-related transactions associated to that piece of equipment.  The records are broken 

down by physical location, part, or single piece of equipment, depending on the user’s 

request.  The data is presented in the same repeatable format, no matter the TAMCN or 

dates requested. 

1. Display and Synthesis of Raw Data 

The “PartsUsage.xls” file from SOE presents a single TAMCN’s failed parts for a 

given time period, in a given location.  This Excel file has 13 columns of data for each 

part that failed in a given time frame, for a given piece of equipment (taken from the  

SOE DST help file). 

• National Stock Number (NSN):  Unique numerical identifier for each 
part of the selected equipment. 

• Part Name:  Supported Activities Supply System/Federal Logistics 
Record (SASSY/FEDLOG) text description of the part. 

• Part Count:  Required number of a given NSN for selected date range.  
This quantity is bounded by the Stock List (SL)-Quantity of that part. 

• Unit Price:  Current SASSY/FEDLOG part cost for the part. 

• Order Count:  Number of given part ordered during the data range.  This 
quantity is NOT bounded by the SL-Quantity. 

• Extended Price:  Total cost of NSN ordered. 

• Equipment Repair Order (ERO) Count:  Number of EROs that NSN 
was required during the selected date range. 

• Average Logistics Response Time (LRT):  Mean of the LRT (number of 
days between date that part is ordered and date it is received) for a given 
NSN during selected date range. 

• Failure Rate:  Measure of reliability, in failures per million calendar 
days, for given NSN during selected date range.  The failures per million 
calendar days figure is converted to failures per calendar day when the 
PartsUsage file is downloaded from the Website. 

• Percentage of Weapons Systems (WS) Replaced:  Measure of 
percentage of weapon systems (WS) that given NSN was replaced during 
selected date range. 



 14 

• Stock List Quantity:  Identifies total number of given NSN that are 
required on selected weapon system. 

• Criticality Code:  The criticality code assigned to the NSN. 

• Source, Maintenance, and Recoverability (SMR) Code:  Code 
associated with the NSN that is used to determine the echelon of 
maintenance authorized to condemn, repair, or remove and item. 

During IDFW 18, it was agreed that the data collected at various points in the 

maintenance and supply chains can be flawed with user error.  Some of the issues include 

missing/incorrect serial numbers for equipment, incorrect order quantities, missing SMR 

codes, and a host of others.  An important benefit of SOE DST to TLCM is the filtering 

done behind the scenes to make up for gaps in the data.  Once the gaps are filled, 

averages are presented to the user for various metrics.  For the purpose of this research, 

the most important metric is the failure rate. 

2. Failure Rates and the Stochastic Modeling Process 

 Probabilistic and deterministic are two common approaches to modeling and 

simulation.  Deterministic models do not utilize random variables, and are typically more 

appropriate for use in clearly defined and unchanging cause-and-effect relationships.  

Scheduling of aircraft may be an example of an appropriate deterministic model 

approach, in that missions, costs, and benefits are clearly defined and the goal is to decide 

the optimal combination of scheduling factors.  A probabilistic model can capture the 

random nature inherent in many logistics systems. 

 In probabilistic models, historical reference may be used to define probabilities 

after distributions are fitted to the data.  Once a model is built in this manner, it allows an 

analyst to take advantage of historical reference in order to develop an understanding of 

possible futures to aid in decision-making processes.  To ensure that the possible futures 

are believable, validation of the model is necessary and development of confidence 

intervals is appropriate.  The keystone to a probabilistic model is capturing the right 

distributions for inputs within the model. 

SOE DST provides an average that may be applied to a probabilistic model if the 

model uses a defined distribution, such as the exponential distribution.  Though with 
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equipment failures it is typical to use a Weibull distribution, to get a less variable picture 

of potential failures, the exponential is sometimes used (Devore, 2008) as a substitute.  

The Weibull distribution allows for infant mortality or wear-out mortality depending on a 

particular part’s tendency.  Since SOE DST provides an average, the Excel-based file 

may easily be transferred into inputs into a probabilistic model if an exponential 

distribution is assumed.  Because SOE DST summarizes the data from a larger database, 

a user of B-OLT cannot derive the shape parameter required to use a Weibull 

distribution.  This may or may not be a factor.  For example, when applied to electronic 

TAMCNs, it may be determined that a Wiebull is required.  When working with the 

assembled team at IDFW 18, it was agreed that, given the nature of the legacy JLTV 

vehicle, using an exponential distribution with analyzed data was more desirable than 

attempting to reanalyze the same data in order to use a Weibull.  Future SOE DST 

methodologies may aide modeling if shape parameters are computed. 

The benefit to using synthesized data from a common repeatable source, such as 

SOE DST in the modeling process, is that the process of summarizing the data is 

universal across TAMCNs.  This means that a model that effectively uses the SOE DST 

data for one TAMCN will use the SOE DST data from a different TAMCN in the same 

manner, with similar results.  A model-build process, in turn, that systematically takes the 

results of SOE DST and translates it into a model may be reused across multiple 

TAMCNS.  Further, if the models are built with the same process, using the same data 

source, and are repeated over varying conditions and produces statistically similar 

predictive results, the entire modeling process may be validated over time. 
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III. TLCM-AT:  A STOCHASTIC MODELING PLATFORM 
DESIGNED TO USE CURRENT DATA FOR  

QUANTITATIVE PREDICTIONS 

TLCM-AT is a stochastic model platform.  The building of models within the 

TLCM-AT environment relies on data that has been collected, cleaned, and analyzed.  

One purpose of models built in the TLCM-AT environment is to conduct “what if” 

analysis designed to gain insight on the impact of potential decisions.  This chapter 

discusses TLCM-AT methodology and processes. 

A. TLCM-AT:  A MODEL PLATFORM, NOT A MODEL 

 The Marine Corps, as part of goal three, objective one of the MCSC 2005-2009 

Strategic Plan, requires the capability to use collected historical data to create models 

useful in “what if” analysis.  Clockwork Solutions provided a tool that was originally 

developed for aircraft maintenance.  The sophisticated platform takes user inputs through 

multiple interfaces and allows the user to determine the effects of policy and management 

decisions before implementing a change in the real world.  This use of simulation reduces 

the necessity of performing costly trial-and-error testing.  TLCM-AT was developed to 

assist weapon systems fleet managers with evaluating, quantifying, and reducing life 

cycle costs, without adversely impacting fleet readiness and availability (Clockwork 

Solutions, 2005).  The continuous-loop representation of the life cycle of any weapons 

system combines operations, maintenance, and logistics, as shown in Figure 4.  The blue 

(inner loop) portions are input variables, while the black (outer loop) portions are outputs 

from the model.  The level of fidelity available with the TLCM-AT model is greater than 

that of the outputs from SOE DST, which results in some challenges during the model-

building that are discussed in Chapter IV. 
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Figure 4. The TLCM-AT continuous-loop model (From:  ATLAST Technical 

Reference Manual, 1992-2005).  The outer green boxes represent model modules.  Each 
inner box is an external factor that may effect any of the outer modules.  The inner blue 

terms represent user inputs and the outer black terms are model outputs.  This is best 
viewed in color. 

An individual weapons system TLCM-AT model is composed of six interactive 

components, according to the Clockwork Solutions’ technical manual (1992-2005): 

• Initialization:  The initial condition and location of systems and parts in 
the model; parts or systems in maintenance at the start of the simulation.  
This is an opportunity to define the age of the fleet, if applicable/possible. 

• System Module:  Work breakdown structure of the system and its 
variants; the fleet disposition including acquisitions and redeployments; 
base support structure; three echelon levels, to include ship times. 

• Operations Module:  Current and future operations according to base 
location, platform type, or serialized system; unscheduled removal rates 
and life limits. 
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• Maintenance Module:  Actions on a component after it has entered 
maintenance; capacity constraints.  Maintenance task times, logistics 
consequences, and not repairable this station (NRTS) probabilities. 

• Sustainment Module:  Spares, lateral resupply, depot upgrades, and 
induction programs, reprovisioning. 

• Cost Module:  The cost of purchases and activities, including (but not 
limited to) maintenance, training, initial and reprovisioning of parts, 
storage, shipping, and upgrades.  There are nine total categories of cost. 

B. TLCM-AT:  INPUT CONSISTENCY CONCERNS 

With the above interactive components come many opportunities to adjust how 

systems are modeled.  As models are not necessarily a reflection of reality, but always a 

reflection of what is contained in the model, greater accuracy in the model naturally 

translates into a clearer and more accurate view of eventual reality.  The MCSC strategic 

plan objective calls for a link between the data that is summarized in SOE DST and the 

model-build process.  Removing SME inputs in the foundation of the model, and limiting 

the inputs to a single data source, allows for repeatability in the process, which is critical 

to future validation efforts. 

1. SME Inputs are Often Used, but are not Universally Consistent 

Prior to this research, TLCM-AT models relied on data from a myriad of sources 

particular to the modeler’s span of influence or access.  As a result, each model was built, 

verified, and then used to answer the questions specific to the time the model was 

contracted.  Models could occasionally be reused to answer emerging questions, but not 

necessarily as a matter of course. 

TLCM-AT models are built with available SME inputs and summarized data.  

Clockwork Solutions has used SOE DST data in the past, with adopted rules for handling 

gaps and supplementing with SME input.  In weapons systems maintenance, SMEs 

develop a general understanding for the weapons system.  As they may be grown in a 

particular location within a particular operational tempo, they develop expertise in how 

that weapon system functions in their current environment.  Finally, the  

model-builder may not have access to the best SME.  These factors make it essential to 
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augment the SME in the model-build process wherever possible.  This augmentation 

should come in the form of objective data. 

Through B-OLT automation, future efforts may be applied to how the data is 

gathered and summarized.  Additionally, a quantitative analysis may be applied to 

improving the processes by which the Marine Corps collects, stores, and displays its data. 

SMEs are critical when anticipating what may happen in the operational 

environment.  Part of the research was to test the predictive nature of models built.  To 

test this capability, a period of known change was selected and modeled, using only two 

pieces of information. 

• The historical maintenance data taken from SOE DST for the prior year. 

• The information that would have been known by an SME in terms of 
changes in operational tempo and vehicle populations. 

To obtain point two, a modeler requires the input that only a SME can provide.  

The difference in this case is that the SME is providing input particular to the current 

emerging situation.  The historical performance data is still resident in a common picture, 

single source platform, SOE DST. 

2. Historical Data Inputs 

TLCM-AT is an Access-based simulation that accepts as much, or as little, detail 

as required to answer the modeler’s question.  Prior to the automation of user inputs 

through B-OLT, developed as part of this research, historical data was left up to the data 

sources available to the modeler.  With SOE DST alone, there are 12 sources for 

maintenance and supply data.  Without continuity of data sources, there is no way to 

replicate models built between modelers. 

The SOE DST Parts Usage file is enough to build a base model.  TLCM-AT 

models have a minimum requirement for the modeler to identify the vehicle platforms, 

the parts that make the platform (does not have to be complete), the base infrastructure, 

and failure rates.  The models built can also be given shipping times between bases, rules 

pertaining to lateral support, and a host of other optional factors.  The master data 
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repository (MDR) that houses the maintenance and supply historical data for the  

Marine Corps contains a majority of the data necessary to at least build a minimal 

TLCM-AT model. 

C. TLCM-AT CAN IMPROVE MAINTENANCE PROCESS 
UNDERSTANDING 
TLCM-AT, or other simulations, may be employed to explore management or 

policy decisions before committing.  This allows decision makers to gain insight to help 

understand the full consequences of that decision.  Once the TLCM-AT model is built 

and assessed, input factors may be changed to determine potential improvements in 

measures of effectiveness.  Models may also be used to determine what factors may help 

to improve specified system outputs. 

Models that are shown to reflect reality provide insight into possible futures.  

When decision makers are considering supply positioning options, various courses of 

action may be modeled to demonstrate the effect on PEI availability, for example.  If the 

possible policy demonstrates a reduction in availability in the model, it is reasonable to 

assume the same may hold for the real world.  This requires that the model demonstrate 

an appropriate level of similarity to the real world.  This confidence comes from repeated 

use of the model, or the model-build process, and the subsequent accumulated validation. 

Similarly, an assessed model may be used to determine where policy may be 

improved.  Through DOE, factors are adjusted in order to demonstrate which are the most 

influential in explaining the variability of a specified measure of performance.  Again, 

prior to any reliance being placed in the model’s insights, there must be some verification 

of its performance.  As stated by the DoD Modeling and Simulation Coordination Office 

(MSCO), “it is virtually impossible to separately evaluate a model and the data it uses” 

(Modeling and Simulation Coordination Office, 2006). 

TLCM-AT models built using SOE DST data are based in a standardized format.  

Through the research, it was determined that models built using SOE DST data acted 

similarly across vehicle variants.  This understanding makes it clear that if one can adapt 

a process of model-building and get expected results, then the process itself can be 

verified.  Further work could, in fact, lead to a validation of the model-build processes, 

given the standard data source and the model platform. 
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IV. B-OLT MOVES SOE DATA INTO THE  
TLCM-AT PLATFORM 

This research initially focused on the model-build process.  Old constructs had 

TLCM-AT models built and “what if” analysis conducted by Clockwork Solutions.  

While licenses are available to the Marine Corps, the model-build process is currently too 

complicated to be functionally practical.  However, data to feed the model is available to 

every Marine.  SOE DST provides a single document that satisfactorily provides most of 

the information needed to build a functional TLCM-AT model.  The information not 

resident in SOE DST can be found in Visibility & Management of Operation & Support 

Cost (VAMOSC) and SME input.  This research uses as its research platform the legacy 

JLTV or High Mobility Multipurpose Wheeled Vehicle (HMMWV). 

A. SOE DATA CONVERSION TO TLCM-AT 

As the lexicon for SOE DST and TLCM-AT are not alike, there are some 

assumptions that must be made and rules established.  TLCM-AT is a series of modules 

within the overall modeling platform.  The system, base, and maintenance modules are 

the basic modules in the model, and cause some difficulty when converting SOE DST 

data into a TLCM-AT model. 

1. Building the System Module within TLCM-AT 

The system module consists of input data that represents a work breakdown 

structure of the system and its variants; the disposition of the fleet, including acquisitions 

and redeployments; and the three echelons of maintenance support structure.  Currently, 

the SOE DST format does not allow for an indenturing of parts within the vehicle, nor 

does it define parts by part number.  As a result, each part that appears on the Parts Usage 

Report in SOE DST is treated as a line replaceable unit (LRU).  For TLCM-AT, all 

events begin with an LRU event and therefore each part creates tasks on the event list at 

the start of the simulation.  Figure 5 displays the TLCM-AT possible breakdown structure 

and the limited structure possible using the SOE DST PartsUsage file alone. 
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Figure 5. The work breakdown structure possible in TLCM-AT, as compared to the 

limited structure in an SOE DST-driven model. 

An LRU-only model has the potential to cause large memory storage 

requirements with the model run.  To help offset the storage constraints imposed by an 

LRU-only model, the model is limited to a single vehicle variant and a single base 

structure.  Figure 6 shows the base structures possible in TLCM-AT and the base 

structure used to accommodate the LRU-only model using SOE DST data. 
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Figure 6. The base structure possible in TLCM-AT, as compared to the limited base 

structure in an SOE DST-driven model. 

 The LRU only model limits the scope of future “what if” analysis.  Using the 

single base structure the model cannot exercise lateral resupply or variations in 

intermediate/depot level supply infrastructure.  Having only LRUs identified, the model 

is limited to the size of the fleet it can model based on memory storage requirements.  

This unnecessarily limits the dynamics possible within the TLCM-AT environment.  As a 

result, future improvements must include indenturing of parts and the incorporation of a 

parts number structure within the SOE DST. 

2. Building the Operations Module within TLCM-AT 

The operations module consists of the operational profile, unscheduled removal 

rates (URR), and life limits.  The fidelity is left up to the modeler.  In the case of the 
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operations profile, it is possible to define usage per serialized platform or maybe as 

general as a defined amount of hours per platform per base.  Acceptable units in  

TLCM-AT are operating hours or miles.  There is an option to define two more units, 

such as number of starts, if necessary.  In the SOE DST-based model, there is currently 

no reliable way to capture average usage rates at any level.  This is a function of poor 

data collection resulting in missing figures when SOE DST conducts its analysis.  As a 

result, this research resorted to VAMOSC figures for average annual miles.  In the future, 

it may be appropriate to include an average annual usage rate within the PartsUsage file 

of SOE DST. 

The SOE DST equivalent for the URR is the failure rate.  When a user downloads 

the PartsUsage file from SOE DST, they are provided a failure per day rate for each part.  

For TLCM-AT, failures are treated as a Weibull distribution.  SOE provides an average 

failure rate across the fleet.  Without the raw data, a B-OLT user cannot compute the 

shape parameter.  Without knowing a shape parameter, SOE DST-driven TLCM-AT 

models use the exponential distribution (i.e., we assume a shape parameter value of 1).  

Additionally, TLCM-AT works with failures per kilo-miles and the SOE DST failures 

per day must be converted using the following formula: 

1 91.25 1* *
- -

Failures days Qtr Failures
Day Qtr X kilo miles kilo miles

=  

Once the failures per kilo-mile are determined, the miles per hour (mph) must be 

determined to get an estimated depiction of system-level operational usage.  An SME 

opinion of the average speed the vehicles travel is required, as SOE DST does not 

currently provide this information.  In garrison (noncombat) operations it is presumed 

that vehicles drive at an average 20 mph rate.  In combat, this figure is boosted to  

35 mph.  With the VAMOSC-provided average miles driven and the SME-provided mph 

estimates, the operations module may be created. 

3. Building the Maintenance Module within TLCM-AT 

The maintenance module accepts inputs pertaining to logistics consequences, 

maintenance task times, and NRTS events.  NRTS is a TLCM-AT-specific acronym that 

allows the model to address cases when a component must be evacuated to the next 



 27 

higher echelon of maintenance.  Typically, with Marine Corps maintenance, this is tied 

directly to the specific part requiring maintenance. 

The maintenance cycle begins with an LRU event that is caused by the 

unexpected removal rates and life limits definitions provided in the operations module.  

The end of the maintenance cycle depends on the object of interest.  A platform is out of 

the maintenance cycle when all of its slots (defined in the system module) are filled with 

operable parts. 

When there is an LRU event, the first step is an inspection of the vehicle, which 

always occurs in the operational level.  The inspection results in four possible object 

statuses:  operational, no-fault-found, repairable failure, or nonrepairable failure.  Since 

the maintenance cycle begins with an LRU event, the LRU is removed from the platform 

and inspected first.  Based on the possible status, the following will result: 

• Operational:  LRU is never removed and the platform immediately goes 
back in the operation cycle. 

• No-Fault-Found:  LRU removed, inspected, and replaced in the platform, 
as if it were determined to be operational. 

• Repairable Failure:  LRU is removed and replaced in the platform if 
there is a spare LRU available.  The LRU enters the maintenance cycle.  A 
module, part, or subpart is determined to be damaged and that module, 
part, or subpart is removed from the LRU.  The module, part, or subpart is 
entered into the maintenance cycle.  If a replacement is available, the 
LRU’s defective part is replaced and LRU is put back into the platform (if 
no spare LRU was previously available) or into shelf stock. 

• Nonrepairable Failure:  Same as repairable failure, but the LRU is 
discarded and new part installed. 

The maintenance cycle from LRU event to repair may be seen in Figure 7. 
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Figure 7. The maintenance flow module in TLCM-AT.  This is best viewed in color. 

For the SOE DST-based model, the SMR codes are used to define logistics 

consequences.  Inspection times are based on the third digit of the SMR code, which, 

according to NAVSUP 7-19, is the lowest maintenance level authorized to remove, 

replace, and repair the part.  The model logic allows times to be allocated for inspection, 

repair, and shipment.  The Maintenance Allocation Chart (MAC) associated with every 

TAMCN provides expected times to perform maintenance tasks.  For the legacy JLTV, 

the MAC is found in TM 9-2320-280-20-3.  Table 1 defines the high and low times 

associated to inspections, repairs, and tear times, based on which level of maintenance is 

allowed to repair or replace the item.  Currently, there is no distribution associated with 

these times. 
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Table 1.   Inspection time, in hours, assumptions applied to an SOE DST-driven model. 

Action MAC 
Nomenclature Range 1st Echelon 2nd Echelon 3rd Echelon 

Inspection Inspection and Test 
Low 0.0 0.2 0 
Avg 0.18 2.0 0 
High 0.7 2.0 0 

Repair Overhaul, Repair 
and Service 

Low 0.0 0.0 0 
Avg 0.63 3.8 0 
High 3.5 16.0 0 

Tear Install and Replace 
Low 0.0 0.0 0 
Avg 1.1 3.2 0 
High 10.0 32.7 0 

The tear times are used to define how long it takes an object to be removed from 

the platform.  Since B-OLT creates an LRU-only model, and there is no flexibility in 

defining separate removal rates based on indenture, additional time had to be added to 

parts that are typically evacuated to a higher echelon of maintenance.  An LRU in the 

TLCM-AT logic is removed at the operational level.  If it is NRTS, then it is evacuated to 

the next higher echelon of maintenance and the modules that are defective within the 

LRU have their own associated intermediate- or depot-level tear times.  However, given 

the limits of an SOE DST-based model, the shipping times had to be added to the 

operational tear times.  It is important to remember that each LRU is removed at the 

operational level.  Table 2 demonstrates the time added to tear time in TLCM-AT to 

account for shipping the part or PEI to the appropriate echelon of maintenance. 

Table 2.   Tear time assumptions applied to an SOE DST-driven model. 

Lowest Remove/Replace Ship Time to Repair Level 
 Single DOE range 
Operational 0 0 
Intermediate 5 days 1-20 days 
Depot 30 days 20-60 days 

It is possible for each part to define maintenance allocation times based on the 

maintenance allocation charts.  However, the legacy JLTV MAC does not define parts by 

NSN and therefore there is no practical way to merge SOE DST data with MAC.  The 

MAC nomenclature does not match the nomenclature used in SOE DST and there are 



 30 

multiple NSNs that may or may not be the same part.  Without a clear understanding of 

the indenture structure and which parts require how much time, based on MACs, the  

SOE DST-based model is limited to approximations of times, based on echelon of 

maintenance categories. 

4. Building the Sustainment Module within TLCM-AT 

The sustainment module allows for shipment times, spares allocation, lateral 

resupply, preferred buys, and a depot upgrades program.  The SOE logistics response 

time is the average ship time for that repair part and can be used as shipping times.  This 

is only true if, in reality, there are never spares on hand.  For the model, it would be best 

to fit a distribution to all LRUs (perhaps separated by criticality code) and use this as the 

shipping time.  Given the limitations of SOE DST and an interest in capturing all possible 

failures, the models associated with this research flooded the supply system with 100 

parts at each level of maintenance.  By always having a spare part in the system, there 

was no doubt that the modeled vehicles would achieve their defined operational tempo 

and would, therefore, break as often as possible. 

B. B-OLT CODING IN VISUAL BASIC FOR APPLICATIONS (VBA) 

B-OLT is established in an Excel environment and executes using VBA code.  

The driving factor behind Excel implementation is the universal acceptance of Excel by 

potential users.  B-OLT can be placed on any machine in the NMCI network that has the 

TLCM-AT platform installed and run without requiring the user to learn the TLCM-AT 

application.  However, assessment of the model built must be done prior to conducting 

any “what if” analysis.  For this reason, PMs must work in concert with modeling 

professionals employing any simulation.  The overall place for B-OLT is between  

SOE DST and TLCM-AT to bridge the gap between data collected/summarized and 

simulation as demonstrated in Figure 8. 
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Figure 8. The link developed with B-OLT between data and simulation. 

B-OLT links the SOE DST Excel document with limited user inputs to the  

Access-based TLCM-AT platform.  The user interface fills gaps in the SOE DST 

PartsUsage file data.  Specifically, the user must provide maintenance times (from 

MAC), shipping times (from SME), annual miles (from VAMOSC), average mph (from 

SME), and minimum dollar value of interest (from SMEs).  The minimum dollar value of 

interest is aimed at helping computational time.  In this research, the parts that are 

reported on the PartsUsage file with a value less than the minimum are consolidated prior 

to model-build.  It is recommended that future SOE DST PartsUsage files contain this 

data in order to create a more standardize model-build process. 
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V. B-OLT-DRIVEN MODELS ASSESSMENT 

We need to assess the quality of the models built using B-OLT.  This assessment 

involves checking the model’s ability to produce reasonable results based on consistent 

inputs.  Once assessed, a validation of the model may begin.  The following describes the 

assessment and validation of the B-OLT-built models. 

A. VERIFICATION/ASSESSMENT:  MODELED FAILURES COMPARED 
TO DATA HISTORY 

The automated-build process is assessed using five separate HMMWV variants:  

D1001, D1002, D0187, D1125, and D1159.  The populations used are those of the entire 

Marine Corps.  By using the entire Marine Corps, the computed failure rates can be 

consolidated and are not directly influenced by specific environment factors that may or 

may not be present in one location or another.  A total of five models are built and run.  

The MOE is each model’s ability to replicate the modeled  

year’s failures. 

The proportion of difference was computed with ModelUER SOEPartCount
SOEPartCount

−  

where Model UER is the modeled failures and SOEPartCount are the actual failures.  The 

results are presented in Figure 9.  The chart displays the distribution of the difference 

between modeling and actual failures.  The larger bars demonstrate more occasions when 

that particular value was reported.  The percent difference distribution figure shows that 

the average percent difference is around 30%.  With an average of 30% difference 

between real and actual failures, the results seemed disappointing.  There was reason for 

concern with vehicle populations, and adjustments were made. 
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Figure 9. The distribution of proportion difference between the actual failures and 

modeled failures. 

The outliers tend to be those parts with a high number of failures and, because the 

part counts directly impact the failure rate in SOE DST, these are also the parts with a 

higher failure rate.  The D1125 and D1159 have the largest populations’ numbers and the 

largest standard deviations.  Given that the vehicle populations come from the serialized 

count document from SOE DST, but the URR computation comes from an adjusted 

vehicle population based on rules within SOE DST, it is reasonable to assume the vehicle 

populations are misrepresented in the first draft of the model. 

The average percentage difference for D1125 and D1159 was 32% and 30%, 

respectively, while the percent difference for D0187 was 11%.  Because SOE DST does 

not contain the number of vehicles used to calculate failure rate, it is possible the original 

model contained an inappropriate number of vehicles.  The D1125 and D1159 models 

were re-created.  The vehicle populations for D1125 and D1159 were reduced by 20% of 

their original count and a better-assessed model resulted.  Figure 10 shows the new 

distribution of proportion differences that result from the adjusted populations.  Once a 

reasonable percent difference was achieved, actual difference numbers were examined. 
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Figure 10. Proportion difference on adjusted vehicle population actual failures v. 

modeled failures. 

For each variant, the actual difference between real and model parts failures was 

computed.  The computation for literal difference ( ModelUER SOEPartCount− ) results 

in a better picture of what the real difference is between the models’ failures and real 

failures.  Figure 11 shows the results taken from all TAMCNs at the Marine Corps 

inventory levels after D1125 and D1159 vehicle counts are adjusted.  For a total of 1,315 

parts, the models had a mean actual difference of 0.53.  This mean difference is the 

average difference of modeled failures from real failures.  Given that the tool will be used 

to project maintenance parts requirements, the overestimation is desirable.  Smart over-

provisioning will ensure parts are available for repairs, while not stressing embarkation or 

budget restraints. 
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Figure 11. Distribution of Model Failures–SOE DST failures across TAMCNs in the 

Marine Corps total population.  The model is overestimating failure events  
in general. 

While the outliers are of concern, the overall results are promising.  The outliers 

are all parts with high part counts and high vehicle population counts.  However, having a 

model that assesses this well would provide a practical tool to answer “what if” 

questions.  For example, if the Marine Corps had a chance to switch vendors for a 

particular part that promised a better failure rate, the effects of that adjustment could  

be, at least, roughly quantified. 

Figure 12 shows the correlation between the URR, part count, and difference in 

the models.  Correlation is the degree of linear association between factors (Devore, 

2008).  Here, a correlation of 0.71 suggests that high URRs are associated with high 

differences between modeled and real parts failures.  As more failures accrue, the 

distance between reality and model increases. 
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Figure 12. The correlations between URR, Part Count, and Difference across  

all TAMCNs. 
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B. FURTHER EXPLORATION OF ALL REGIONAL ACTIVITIES CODES 
MODEL 

Once reasonable models were developed, regression analysis was conducted.  For 

the analysis, the removal rate, vehicle count, annual miles, and average miles per hour 

were considered.  The output analyzed is the difference between actual and modeled 

failures.  The analysis is done in JMP® using a step-wise regression. 

Sorted parameter estimates, like the ones in Figure 13, present the factors in 

descending order, from most to least significant.  The significance is measured with the t-

ratio.  An absolute value t-ratio of greater than two rejects the hypothesis that the factor is 

zero (Devore, 2008).  If the factor is zero, it is meaningless in the computation of the, in 

this case, failures recorded and subsequent difference from reality. 
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Figure 13. Parameter estimates for all RACs data for all TAMCNs. 

When the SOE DST-driven model is verified, there are interaction factors relevant 

to the outcome.  Correct URR figures allow the model to be properly affected by other 

factors, such as the number of vehicles with those parts and the miles driven by those 

vehicles.  Two points may be made: 

• The wrong URR will cause the model to drift away from reality. 

• If the correct URR is captured, the number of vehicles and miles driven 
impact the assessment strength of the model. 

As the number of parts that failed during the period increases, so does the 

difference between what failed in the model, as compared to reality.  There are pairwise 

correlations that explain why URR is the most significant factor.  When SOE DST 
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computes failure rates, it is a function of uptime and the number of parts that have failed 

during the given period.  Uptime is determined by vehicle and is the number of days a 

serial number is available for operation.  Correlations between VC and annual miles 

driven are reasonable.  The correlations show that there is interaction between these 

factors and the model makes sense.  The positive correlation indicates that as the URR, 

miles driven, and vehicle counts increase in reality, the deviation from reality is expected 

to increase.  Since URR is a function of the number of parts that have failed during the 

given period, increased numbers of failures means an increase in deviation from reality 

within the model as well.  Finally, these all demonstrate the importance of the URR (e.g., 

failure rate) within SOE DST being as accurate as possible. 

C. STEPS TOWARD VALIDATION:  PREDICTIONS MADE BY VERIFIED 
MODELS 

In 2003, I MEF deployed to Iraq with a portion of their legacy JLTV assets.  The 

MEF’s overall vehicle population increase was known.  VAMOSC provides a deployed 

and garrison annual-miles driven rate.  SME input suggests the speed of deployed 

vehicles increased to an average of 30 mph.  SOE DST-driven TLCM-AT models were 

built using B-OLT and 2002 data.  These models were then run by increasing the vehicle 

counts and the operational tempo within TLCM-AT—with surprising results. 

1. Known Changes Key in Testing Prediction Capability 

For meaningful validation, the results that the model is to be compared with must 

be known, but not used to build the model.  Data for 2003 were not used in the creation 

of the 2003 models; however, to test the model’s predictive capacity, it must be presumed 

that some elements would be known.  For this research, the following was assumed to be 

known in 2002: 

• 2002 SOE DST data. 

• Vehicle numbers for the deployment. 

• An estimate for miles to be driven in 2003. 

• An estimated average speed. 
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In 2002, I MEF was given the mission to deploy to Iraq.  Prior to leaving, they 

received an increase in equipment allocations and could estimate that their operational 

tempo would increase.  For this research, VAMOSC was used to get average annual 

miles for deployed legacy JLTV assets.  The MDR was used to get reporting quantities of 

legacy JLTVs for the MEF during 2003.  Both data elements would have been known, or 

could have been estimated, in 2002. 

The 2002 model was built and assessed.  The known changes (count, miles, mph) 

were then changed in the assessed model.  In so doing, the SOE DST-driven TLCM-AT 

model, built using B-OLT, was able to “predict” 2003. 

2. The Model Demonstrated an Increase in Failures Based on Known 
Expected Operational Tempo Changes 

The B-OLT model was subject to some limitations.  As discussed earlier, SOE 

DST only reports on failures that occurred during the time frame requested.  Therefore, in 

the 2002 to 2003 prediction, there were parts that failed in 2002 that did not fail in 2003.  

Additionally, there are multiple NSNs that represent the same part.  These two facts 

combined made it impossible to thoroughly investigate the model’s predictive capacity.  

Prior to models being built, 2002 and 2003 PartsUsage files were compared and only 

those NSNs in common between the two years were modeled. 

Given the limitations, there were still insights to be gained by comparing the 

predicted failures with the failures experienced during 2003.  The NSNs that failed in 

2002 were modeled in the 2003 model.  All modeled failures’ NSNs were compared to 

2003 SOE DST PartsUsage file Parts Count.  There were 297 total parts that were 

modeled across the TAMCNs.  From these 297 parts, the mean absolute difference was 

2.52.  Again, this difference was a conservative estimate, and would ensure that more 

parts are available for repairs.  The correlations, in Figure 14, demonstrate again the 

reliance on the URR and total failures. 
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Figure 14. The correlation coefficients of the number of part failures, URR, and the 
difference between model and reality.  The prediction exercise shows promise and the 

correlations suggest where improvement can be made. 

Given the current predictions from the model, as built from existing SOE DST 

data, a provisioning package could be made.  Specifically, the UER (modeled failures) 

quantities could be used to draw a Class IX block.  If the UER quantities were taken plus 

one, two, or three standard deviations, the results would be as pictured in Figure 15.  

Along the x axis are the results of UER-Parts Count computation.  The results show that 

going just one standard deviation more than the model’s prediction would have resulted 

in being short on only 17 of 297 parts during the provisioning period. 
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Figure 15. The results of provisioning with predictive model.  The columns represent 
one, two, or three standard deviations above the modeled requirement minus the actual 

requirements in 2003. 

Until SOE DST reports failure rates for all components of the PEI, and multiple 

NSNs can be linked to a common part number, true measures of predictability will be 
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impossible.  The limited tests, while promising, are just a first step toward validating and 

using the B-OLT models as a predictive tool.  To prepare for the eventuality of 

employing these tools in a predictive capacity, it was reasonable to test the sensitivity of 

the B-OLT models to the factors that were not directly obtained from SOE DST. 

With assurance that the model was acting as expected, a logical next step is to 

explore sensitivities to those factors that are being estimated in the model.  For the  

SOE DST-driven TLCM-AT model, those factors are: 

• Annual miles driven. 

• Vehicle count for each population. 

• Average MPH. 

• Probability that a part will not be repairable. 

• Unexpected remove rate. 

The next step is to develop a DOE to saturate the design space in a most efficient 

manner to test sensitivities to the factors of interest listed above. 
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VI. MODELS’ SENSITIVITY TO INITIAL FACTORS 

During the assessment of the models, factors were identified that might influence 

the MOE.  These factors are explored using DOE.  The DOE methodology is explained 

and results presented. 

A. NEARLY ORTHOGONAL LATIN HYPERCUBE (NOLH) DESIGN 
EXPLANATION 

The NOLH DOE is capable of saturating a design space to discover factors of 

importance.  To test a response variable’s sensitivity to specific factors, a design should 

be made to ensure little or no correlation between factors.  In making the design points 

nearly orthogonal through an NOLH DOE, the estimates of the coefficients in the 

associated regression models are uncorrelated (Cioppa & Lucas, 2007).  The model sets 

described in this chapter were all created using a NOLH design. 

B. GENERAL DOE FOR SENSITIVITY ANALYSIS FOR FACTORS USED 
IN THE MODEL-BUILD 

An efficient DOE was developed using NOLH designs.  These DOEs were run 

using the SOE DST PartsUsage file pulled for TAMCNs D0187, D1001, and D1002.  

Records for all Regional Activity Codes (RACs) in the Marine Corps were used.  

Accordingly, there were three model sets developed in the research associated with this 

portion of the thesis. 

There were some common design factor ranges for all legacy JLTV variants and 

they are displayed in Table 3 as they were used in the NOLH design. 

Table 3.   NOLH DOE factors that are common between all TAMCNs. 

 ProbCon MPH RateChange 
Low 0.1 20.0 0.5 
High 0.99 50.0 2.0 

Probability of condemnation (ProbCon) is the probability that a repairable part 

will not be repairable and will need to be replaced.  As discussed earlier, the URR is 

derived from the SOE DST’s failure rate and is equivalent to the inverse of Mean Time 
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Between Failure (MTBF).  In order to vary this within the DOE, each URR was 

multiplied by a uniform rate change between 0.5 and 2.0.  Finally, mph was varied from 

20 to 50, based on SME input. 

The annual miles driven and the vehicle population factors were also adjusted in 

the DOE.  The high and low values for these ranges were dependent on the original value.  

For annual miles, VAMOSC provided the average miles driven in garrison environments.  

This figure, by TAMCN, was adjusted to plus or minus 1,000 and is used as the high and 

low of the range, respectively.  Vehicle populations were taken from the SOE DST’s 

serialized location report.  The figures provided by SOE DST where then adjusted plus or 

minus 30% for the high and low of the range, respectively. 

TLCM-AT, when defining the URR, allows the user to incorporate two 

parameters for the Weibull distribution.  If a shape other than one is used and the MTBF 

is also adjusted, the result is an unclear representation of the effects of the shape on the 

MOE.  In general, if an exponential distribution is used instead (Weibull with shape = 1), 

the result will be a distribution with wider variation.  Since the worst-case scenario is 

acceptable, the shape parameter was not used as a factor of possible interest. 

C. SENSITIVITY RESULTS 

For D0187, 17 design points were run with vehicle counts that represented the 

population for all RACs.  Each design was run for a total of 100 histories.  A  

5-factor design can be executed with just 17 design points.  The NOLH was set up, and 

the model was run, using the initial 17 design points. An example of the design can be 

seen in Figure 16.  The data in green are the user’s inputs.  Each row below corresponds 

to a given design point.  The columns contain the factor settings across the design points. 
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low level 794 187 0.1 20 0.5
high level 2794 347 0.5 50 2
decimals 0 0 2 0 1

factor name AM VC ProbCon MPH RC
1 1419 347 0.43 31 0.9
2 919 227 0.45 37 0.5
3 1044 257 0.13 28 1.4
4 1169 287 0.23 50 1.3
5 2294 337 0.28 24 1
6 2794 237 0.25 44 0.6
7 2044 217 0.5 29 1.8
8 1919 327 0.4 48 1.7
9 1794 267 0.3 35 1.3

10 2169 187 0.18 39 1.6
11 2669 307 0.15 33 2
12 2544 277 0.48 43 1.1
13 2419 247 0.38 20 1.2
14 1294 197 0.33 46 1.5
15 794 297 0.35 26 1.9
16 1544 317 0.1 41 0.7
17 1669 207 0.2 22 0.8  

Figure 16. The NOLH DOE produced for the D0187. 

The IDFW 18 group decided that the best MOE when assessing the model-build 

process was the model’s deviance from reality in terms of parts failures.  This translated 

into a RMSD computation. 

For each design point, there is a root mean square error computed for the 

difference between how many parts actually failed and how many parts failed in the 

model.  Root mean squared difference (RMSD) = 
( )2

Parts

parts

ModelUER SOEPartCount

n

−∑
, 

where Model UER are the modeled failures, and SOE DST PartCount are actual failures 

for the given time period, model, and population.  This difference is squared and 

normalized, and the sum taken from across all parts associated to that TAMCN.  This 

figure allows an overall MOE of that design point to return an expected result according 

to how it compares to the actual failures experienced in reality. 
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Initial results were not promising.  The model-build process rolls up all parts that 

cost less than $10 into a single part line number.  This is done to ensure that computation 

limits are not exceeded.  Remember that TLCM-AT populates an event list based on the 

failure rates of each LRU.  With no indenture structure provided in SOE DST, the models 

built for this thesis are LRU-only models.  During the post analysis, it was discovered 

that the line item for the consolidated parts contributed a lot of variability into the model.  

This is a result of the wide range of failure rates associated to the individual parts that 

make up this consolidated parts line.  Once this line was deleted from the analysis, the 

RMSD analysis made more sense. 

Correlations again were examined first to determine which factors were correlated 

with the RMSD.  In Figure 17, the following abbreviations apply: 

• AM:  Annual miles, the miles driven during the simulation. 

• VC:  Vehicle Count, the number of vehicles in the simulation. 

• ProbCon:  The probability of a repairable part being condemned. 

• MPH:  Miles per hour. 

• RC:  Ratio Change.  The computed URR is multiplied by this factor to 
represent an incorrect URR. 

• RMSD:  Root mean squared difference. 
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Figure 17. The correlations in the NOLH DOE performed on the D0187 variant.  The 
positive correlation between RMSD and RC indicate that an increase in RC will result in 

a larger overall change in the model’s ability to back validate well. 

The correlations are displayed to demostrate the orthogonal nature of all the input factors.  

This is a result of the careful DOEs using an NOLH.  It can be seen that the individual 
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factors do not share correlation.  Corrrelation between a factor and RMSD demonstrates 

that factor’s linear effect on the eventual outcome. 

D1001 and D1002 were run through the same fundamental DOE.  The only 

change was that a stacked design was used, so there were 34 total design points for the 

D1001 and D1002 models.  The correlation matrices are in Figure 18.  The URR remains 

a factor in all models; however, the degree of influence varies considerably between  

the models. 
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Figure 18. The correlation coefficients for the D1001 (left) and  
D1002 (right) variants. 

The results were then all consolidated and analyzed together.  The correlations in 

Figure 19 demonstrate the overall correlations between all TAMCNs modeled.  The 

TAMCN is a categorical variable applied to the different variants.  Vehicle counts and 

TAMCN are negatively correlated because there are more vehicles in the D1001 than are 

in the D0187, by a factor of five. 
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Figure 19. Correlation coefficients for all variants together. 

D1001, as can be seen in Table 4, has the smallest number of vehicles, yet the 

largest number of parts per vehicle in the model.  With D1001, the RC factor and the 
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vehicle count have a larger impact on the overall RMSD.  The importance of accessibility 

to accurate and thorough input data with modeling becomes more apparent given the 

impact that population and number of parts per platform have on the assessment of the 

model.  These factors change with every MEF and for every TAMCN; thus, reusing an 

existing model is not as appealing as employing an automated model-building process. 

Table 4.   Design of experiments with the addition of the Parts Count column.  The Parts 
Count is the number of parts modeled per vehicle. 

AM VC ProbCon MPH RC Parts Count
low level 794 187 0.1 20 0.5

high level 2794 347 0.5 50 2
low level 802 49 0.1 20 0.5

high level 1802 93 0.5 50 2
low level 279 106 0.1 20 0.5

high level 2279 198 0.5 50 2

69

174

146

Factors:

D0187

D1001

D1002  

The apparent impact of parts to vehicle population ratio demonstrates a 

requirement to rethink how SOE DST displays output.  Each legacy JLTV variant should 

contain more or less the same amount of parts.  If SOE DST produced a by-part-number 

breakdown structure for a TAMCN, concern about the effects of parts density per vehicle 

in the model would be avoided.  Additionally, a better understanding of all parts would 

be achieved. 

D. FACTORS OF INTEREST BASED ON SENSITIVITY ANALYSIS 

 For initial sensitivity analysis, the scope was limited to D0187.  Here the factors 

were regressed against the RMSD.  Because of the NOLH DOE, true significant 

interactions are discovered. 

For D0187 populations in all RACs, the DOE factors used accounted for 95% of 

the variability.  The parameter estimates are shown in Figure 20.  D0187 had the largest 

vehicle population and the lowest parts per vehicle modeled. 
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VC*RC
VC
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Prob>|t|
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Figure 20. The parameter estimates for D0187 on 16 design points.  The R-Squared 
for the model is 95%, with an adjusted of 92%.  The model fits well. 

D1001 models well, with an R-Squared of 0.75 and adjusted of 0.73.  This 

indicates that there is a reasonable fit with the factors involved; however, the actual 

factors of interest are much different than those of D0187.  For D1001, the interaction 

between RC and VC tends to be more significant than does RC alone, as seen in  

Figure 21.  D1001’s PartsUsage file has a small ratio of parts to vehicles.  Specifically, 

for the low and high vehicle counts in the NOLH design, there are between 3.5 and 1.87 

vehicles per part modeled. 
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0.001074

Std Error
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Figure 21. The parameter estimates for D0187 on 32 design points across 174 parts.  
The R-Squared for the model is 75% with and adjusted of 75%. 

D1002 has a large vehicle population and a large number of parts per vehicle.  

The two combined to produce a lot of variability in the model.  For D1002, there are 

between 1.38 and 0.73 vehicles per part in the models.  The extreme points are associated 

with design points on the large end of the population and ratio change.  In that situation, 

there are many vehicles, each with 146 parts and those parts are failing at a faster rate.  

This naturally will cause a large deviation from the real number of parts failures 

experienced by this population.  The R-squared for the D1002 model is 0.22, with an 

adjusted 0.17.  With this R-Squared, the model is not suited for use in “what if” analysis. 
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Given the extreme differences in the three models exposed to the DOE, there is 

little collected insight to be gained for the maintenance process alone.  However, for all 

models, the ratio change and vehicle counts were main contributors to variability.  While 

the R-squared values are considerably different between the models, there are great 

differences in the structure of the models.  The difference in the models is a result of SOE 

DST data structure.  A universal approach to the SOE DST data would provide continuity 

in TLCM models in the future.  Specifically, the following changes would help: 

• Indenture structure for the TAMCN would ensure all its parts  
were reported. 

• Work Unit Code or Logistics Control Number and Part Number in 
addition to NSN reporting will ensure parts failures are captured, rather 
than simply NSN failures. 

• A complete list of parts associated with the TAMCN and its current failure 
rate will allow M&S to reflect all parts, not just those that failed during the 
reporting period drawn. 

• The end item population used to compute failure rates in the SOE DST. 

With these changes, a common picture of the TAMCNs could be achieved.  Once 

done, DOE could lead to insights about factors affecting any number of measures of 

effectiveness.  The purpose of this research was to develop the capability to conduct DOE 

analysis.  Unfortunately, given the considerable differences between TAMCNs, possibly 

based on simple vehicle-to-parts ratios, the results are not able to be fully analyzed.  

While things may be said about individual TAMCNs, it is expected that a true picture of 

RMSD will not be possible without a complete (all parts modeled) model. 
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VII. INSIGHTS GAINED USEFUL TO FUTURE TLCM EFFORTS 

Many insights pertaining to the Marine Corps TLCM process were gained from 

this research.  Those insights have led to a realization that TLCM models can be 

developed with the data that are currently being gathered in an automated manner.  This 

automation of the process can lead to validation of the model-build process and put 

modeling in the hands of PMs to assist in policy decisions.  Finally, conceptual future 

directions and opportunities to continue research were discovered. 

A. VERIFICATION OF THE AUTOMATED-BUILD PROCESS 

This research originally was designed to explore a model created by  

Clockwork Solutions’ contractors within the TLCM-AT environment.  While developing 

the background for the work, it was determined there is practicality in streamlining the 

model-build process in order to make maintenance modeling more accessible.  This 

research built an automation tool that was proven capable of taking collected data and 

building adequate models.  Prior to B-OLT, a rudimentary model built strictly from SOE 

DST and limited SME data took approximately three days by a trained TLCM-AT user.  

The models can now be built, run, and output extracted in less than  

10 minutes. 

There are more steps that must be taken to build thorough models.  Future work 

must be applied to discovering what data we should be collecting and how to automate 

data collection.  Specifically, for TLCM-AT models, there are modules that are not 

populated with B-OLT.  By incorporating more data in SOE DST and expanding B-OLT 

a more thorough TLCM-AT model may be built.  A more complete model will allow for 

greater opportunities with modeling and simulation (M&S) in TLCM. 

B. ASSESSMENT OF B-OLT-GENERATED MODELS 

B-OLT drew data from SOE DST and verified that the models built in this 

automated fashion acted as they should.  There was some variance from reality when 

back-assessing the models.  These variances led to examination of the factors of interest 

of those variables captured in the model. 
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C. INITIAL FACTORS OF INTEREST IDENTIFIED USING SOE DST AND 
TLCM-AT 

Future work can lead to a better understanding of factors of interest in TLCM 

MOEs.  B-OLT has made it possible to automatically build and extract data from  

TLCM-AT using data from SOE DST.  SOE DST does not provide a complete vehicle 

structure to model in TLCM-AT.  While TLCM-AT can be used with as many or as few 

parts as the user would like, quantitative analysis on TLCM effects requires some 

continuity between TAMCNs modeled.  However, it is clear even from this research that 

the failure rate and vehicle counts are major contributors to RMSD. 

D. SIGNIFICANCE OF AUTOMATED-BUILD PROCESS 

B-OLT provides TLCM professionals with an opportunity to systematically build 

models using the data synthesized by SOE DST.  The automation allows the model-build 

process to be repeated—a critical step in model verification/validation efforts.  

Additionally, the B-OLT may be applied across TAMCNs. 

1. Time Involved in Manually Building TLCM-AT Models is 
Considerable 

Building a TLCM-AT model was at least a three-day process for a trained user 

prior to B-OLT.  It is acknowledged that the models built today with B-OLT are not as 

robust as a three-day model-build using SMEs and multiple data sources; however, it is 

not far off.  The reality is that this automated model-build technique may be refined and 

improved, and then applied across TAMCNs.  It will take further exploration of SME 

factors, incorporation of TLCM requirements into the SOE DST, and analysis of models 

to determine what factors are important.  Once determined, the next step must be 

exploring how we can automate the data-gathering step.  No model will be better than the 

data it is built on and a commitment to TLCM demands a commitment to data collection. 

2. Opportunity for Use by All PMs for All TAMCNs 

PMs that are required to develop policy to improve mission availability, make 

projections of maintenance requirements, and ascertain the overall benefit of product 
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shifts (either PEI or component level) must be able to simulate the maintenance cycle.  

To do this, the model purchased by the Marine Corps must be accessible by the PM.  It is 

acknowledged that simulations are not for the uninformed; however, a user-friendly 

model-build, coupled with TLCM-AT’s ability to accept one or two variable changes, 

lends itself to quick, effective “what if” analysis.  With that understanding, a uniform 

way of producing models with the data synthesized by SOE DST will provide model 

access to PMs. 

3. Opportunity to Apply DOE to Policy Decisions 

The ability to quickly transfer data gathered into models with some level of 

assurance that they reflect reality leads to an opportunity to exercise that model to gain 

insight on potential policy decisions.  Using a DOE, factors that affect, or do not affect, a 

MOE can be explored.  B-OLT allows for quick and easy model-build and verification.  

Additionally, a loop was put around the code to accommodate NOLH  

DOE runs. 

4. Opportunity to Work toward Model Validation  

Validation of a model requires control over the data used to build the model.  By 

relying on SOE DST data, the models built using B-OLT can be reused and there is 

control over the data used to build the TLCM model.  Validation can be accumulated 

through using the same process over several TAMCNs, time periods, and populations. 

E. FUTURE WORK OPPORTUNITIES 

The work started with this thesis can be greatly expanded upon. 

1. Exploration of Predictive Factors for TLCM-AT Airframe Models 

TLCM-AT was initially developed, and has been used, as a predictive model with 

airframes.  Mechanical failures and the factors that affect these failures may be similar 

between air and ground equipment.  An exploratory analysis of the predictive TLCM-AT 

airframe models built using a DOE may shed light onto factors that are important when 

predicting ground failures.  Once this is determined, these factors of influence can be 
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gathered and modeled for ground equipment.  If these factors turn out to be significant for 

ground equipment, further work will be in order. 

2. Cost Benefit Analysis for Automating Data Collection 

Throughout the thesis process, gaps in data and hazy data were discovered.  Given 

the importance of M&S, a cost benefit analysis of data collection automation is 

necessary.  Specifically, benefits to effective models must be quantified.  A cursory look 

will demonstrate that deployed units carry with them large quantities of spare parts that 

take up valuable embark space.  If these parts are not used during the deployment, the 

cost of not having the capability to predict failures is the loss of embarkation space.  This 

embarkation space, depending on the size, could be used for multiple PEIs, which could 

be useful in operational missions.  Further, no matter which parts are carried on 

deployment, it seems there are always parts being shipped to the unit.  Naturally, the cost 

of shipping translates to a cost associated to the unit’s inability to anticipate requirements.  

Additionally, this causes down time for the PEI and an overall impact on the mission.  If 

significant savings can be achieved through effective modeling and simulation, then data 

collection efforts must be improved. 

3. Further Development of B-OLT Using Other Data Sources and  
Model Platforms 

Currently, B-OLT focuses on 12 of the 32 tables used in TLCM-AT.  Further,  

B-OLT uses only one data source—SOE DST.  B-OLT should be expanded to ensure all 

of TLCM-AT’s functionality is taken advantage of in the future.  Identification of 

elements missing in SOE DST is important, so they may be incorporated in future 

versions of SOE DST.  It is reasonable to estimate that factors of importance identified in 

TLCM-AT models will be important in other TLCM models as well.  As such, this 

identification and incorporation into SOE DST will serve the overall TLCM effort. 

4. Application of the Model-Building Process to Promote its Validation 
of Maintenance Models 

B-OLT-built models must be constructed and scrutinized systematically to obtain 

a validated model within the TLCM community.  This research limited its scope to five 
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legacy JLTV variants.  Naturally, other Marine Corps assets must be evaluated using the  

B-OLT-build process.  By gathering these histories, the TLCM community will gain 

confidence in the model-build process and application to insights aimed at assisting the 

decision-making process. 
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